Cartilage Tissue Engineering: Advances and Frontiers
Defects in the cartilage caused by trauma, osteoarthritis, or other disorders invariably result in severe joint pain and dysfunction. Without access to progenitor cells, blood, and nutrition, the damaged cartilage would be incapable of self-repair. While current clinical treatments such as autogenous and allograft osteochondral transplantation techniques have demonstrated some efficacy, there are limitations such as donor insufficiency and poor integration with adjacent tissue. Advanced scaffold-based versus scaffold-free classifications for replicating cartilage’s native architecture and functional properties are the most recent consideration in cartilage regeneration. This chapter underlines the latest progress in cartilage tissue engineering techniques. Plus, the emerging technologies, such as 6D printing for generation of customized cartilage implants which can be used to mitigate or model disease states in clinical studies, are highlighted.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 181.89 Price includes VAT (France)
Softcover Book EUR 232.09 Price includes VAT (France)
Hardcover Book EUR 232.09 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
- Agarwal T, Chiesa I, Presutti D, Irawan V, Vajanthri KY, Costantini M et al (2021) Recent advances in bioprinting technologies for engineering different cartilage-based tissues. Mater Sci Eng C 123:112005 ArticleCASGoogle Scholar
- Agrawal A, Rahbar N, Calvert PD (2013) Strong fiber-reinforced hydrogel. Acta Biomater 9(2):5313–5318 ArticleCASPubMedGoogle Scholar
- Ahadian S, Civitarese R, Bannerman D, Mohammadi MH, Lu R, Wang E et al (2018) Organ-on-a-chip platforms: a convergence of advanced materials, cells, and microscale technologies. Adv Healthc Mater 7(2):1700506 ArticleGoogle Scholar
- Alghuwainem A, Alshareeda AT, Alsowayan B (2019) Scaffold-free 3-D cell sheet technique bridges the gap between 2-D cell culture and animal models. Int J Mol Sci 20(19):4926 ArticleCASPubMedPubMed CentralGoogle Scholar
- Anas S, Khan MY, Rafey M, Faheem K (2022) Concept of 5D printing technology and its applicability in the healthcare industry. Mater Today Proc 56:1726–1732 ArticleGoogle Scholar
- Ashammakhi N, Ahadian S, Pountos I, Hu S-K, Tellisi N, Bandaru P et al (2019) In situ three-dimensional printing for reparative and regenerative therapy. Biomed Microdevices 21(2):1–6 ArticleGoogle Scholar
- Athanasiou KA, Eswaramoorthy R, Hadidi P, Hu JC (2013) Self-organization and the self-assembling process in tissue engineering. Annu Rev Biomed Eng 15:115–136 ArticleCASPubMedPubMed CentralGoogle Scholar
- Atoufi Z, Kamrava SK, Davachi SM, Hassanabadi M, Garakani SS, Alizadeh R et al (2019) Injectable PNIPAM/hyaluronic acid hydrogels containing multipurpose modified particles for cartilage tissue engineering: synthesis, characterization, drug release and cell culture study. Int J Biol Macromol 139:1168–1181 ArticleCASPubMedGoogle Scholar
- Bakaic E, Smeets NM, Hoare T (2015) Injectable hydrogels based on poly (ethylene glycol) and derivatives as functional biomaterials. RSC Advances 5(45):35469–35486 ArticleCASGoogle Scholar
- Bakarich SE, Gorkin R III, Panhuis MIH, Spinks GM (2015) 4D printing with mechanically robust, thermally actuating hydrogels. Macromol Rapid Commun 36(12):1211–1217 ArticleCASPubMedGoogle Scholar
- Bakhshayesh D, Rahmani A, Asadi N, Alihemmati A, Tayefi Nasrabadi H, Montaseri A et al (2019) An overview of advanced biocompatible and biomimetic materials for creation of replacement structures in the musculoskeletal systems: focusing on cartilage tissue engineering. J Biol Eng 13(1):1–21 Google Scholar
- Balagangadharan K, Dhivya S, Selvamurugan N (2017) Chitosan based nanofibers in bone tissue engineering. Int J Biol Macromol 104:1372–1382 ArticleCASPubMedGoogle Scholar
- Bandyopadhyay A, Dewangan VK, Vajanthri KY, Poddar S, Mahto SK (2018) Easy and affordable method for rapid prototyping of tissue models in vitro using three-dimensional bioprinting. Biocybern Biomed Eng 38(1):158–169 ArticleGoogle Scholar
- Banh L, Cheung KK, Chan MWY, Young EW, Viswanathan S (2022) Advances in organ-on-a-chip systems for modelling joint tissue and osteoarthritic diseases. Osteoarthr Cartil 30:1050 ArticleCASGoogle Scholar
- Barbon S, Contran M, Stocco E, Todros S, Macchi V, Caro RD et al (2021) Enhanced biomechanical properties of polyvinyl alcohol-based hybrid scaffolds for cartilage tissue engineering. PRO 9(5):730 CASGoogle Scholar
- Barbucci R, Lamponi S, Borzacchiello A, Ambrosio L, Fini M, Torricelli P et al (2002) Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials 23(23):4503–4513 ArticleCASPubMedGoogle Scholar
- Barradas A, Yuan H, van Blitterswijk CA, Habibovic P (2011) Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. Eur Cell Mater 21(407):29 Google Scholar
- Bartfeld S, Bayram T, van de Wetering M, Huch M, Begthel H, Kujala P et al (2015) In vitro expansion of human gastric epithelial stem cells and their responses to bacterial infection. Gastroenterology 148(1):126–136. e6 ArticlePubMedGoogle Scholar
- Betsch M, Cristian C, Lin YY, Blaeser A, Schöneberg J, Vogt M et al (2018) Incorporating 4D into bioprinting: real-time magnetically directed collagen fiber alignment for generating complex multilayered tissues. Adv Healthc Mater 7(21):1800894 ArticleGoogle Scholar
- Bishop ES, Mostafa S, Pakvasa M, Luu HH, Lee MJ, Wolf JM et al (2017) 3-D bioprinting technologies in tissue engineering and regenerative medicine: current and future trends. Genes Diseases 4(4):185–195 ArticleCASPubMedPubMed CentralGoogle Scholar
- Brigham MD, Bick A, Lo E, Bendali A, Burdick JA, Khademhosseini A (2009) Mechanically robust and bioadhesive collagen and photocrosslinkable hyaluronic acid semi-interpenetrating networks. Tissue Eng Part A 15(7):1645–1653 ArticleCASPubMedGoogle Scholar
- Campos Y, Almirall A, Fuentes G, Bloem HL, Kaijzel EL, Cruz LJ (2019) Tissue engineering: an alternative to repair cartilage. Tissue Eng Part B Rev 25(4):357–373 ArticlePubMedGoogle Scholar
- Cancedda R, Dozin B, Giannoni P, Quarto R (2003) Tissue engineering and cell therapy of cartilage and bone. Matrix Biol 22(1):81–91 ArticleCASPubMedGoogle Scholar
- Cao Y, Cheng P, Sang S, Xiang C, An Y, Wei X et al (2021) Mesenchymal stem cells loaded on 3D-printed gradient poly (ε-caprolactone)/methacrylated alginate composite scaffolds for cartilage tissue engineering. Regenerative. Biomaterials 8(3):rbab019 Google Scholar
- Chai Q, Jiao Y, Yu X (2017) Hydrogels for biomedical applications: their characteristics and the mechanisms behind them. Gels 3(1):6 ArticlePubMedPubMed CentralGoogle Scholar
- Chameettachal S, Yeleswarapu S, Sasikumar S, Shukla P, Hibare P, Bera AK et al (2019a) 3D bioprinting: recent trends and challenges. J Indian Inst Sci 99(3):375–403 ArticleGoogle Scholar
- Chameettachal S, Sasikumar S, Sethi S, Sriya Y, Pati FJ (2019b) Tissue/organ-derived bioink formulation for 3D bioprinting. J 3D Print Med 3(1):39–54 ArticleCASGoogle Scholar
- Chan B, Leong K (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(4):467–479 ArticleCASPubMedPubMed CentralGoogle Scholar
- Chang CC, Boland ED, Williams SK, Hoying JB (2011) Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater 98(1):160–170 ArticlePubMedPubMed CentralGoogle Scholar
- Chen W, Xu Y, Liu Y, Wang Z, Li Y, Jiang G et al (2019) Three-dimensional printed electrospun fiber-based scaffold for cartilage regeneration. Mater Des 179:107886 ArticleCASGoogle Scholar
- Chen X, Han S, Wu W, Wu Z, Yuan Y, Wu J et al (2022) Harnessing 4D printing bioscaffolds for advanced orthopedics. Small 2022:2106824 ArticleGoogle Scholar
- Colosi C, Shin SR, Manoharan V, Massa S, Costantini M, Barbetta A et al (2016) Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink. Adv Mater 28(4):677–684 ArticleCASPubMedGoogle Scholar
- Cui H, Nowicki M, Fisher JP, Zhang LG (2017) 3D bioprinting for organ regeneration. Adv Healthc Mater 6(1):1601118 ArticleGoogle Scholar
- Daly A, Critchley S, Rencsok E, Kelly D (2016) A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication 8(4):045002 ArticlePubMedGoogle Scholar
- Daly AC, Freeman FE, Gonzalez-Fernandez T, Critchley SE, Nulty J, Kelly DJ (2017) 3D bioprinting for cartilage and osteochondral tissue engineering. Adv Healthc Mater 6(22):1700298 ArticleGoogle Scholar
- De Moor L, Beyls E, Declercq H (2020) Scaffold free microtissue formation for enhanced cartilage repair. Ann Biomed Eng 48(1):298–311 ArticlePubMedGoogle Scholar
- Dehghan-Baniani D, Chen Y, Wang D, Bagheri R, Solouk A, Wu H (2020) Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering. Colloids Surf B: Biointerfaces 192:111059 ArticleCASPubMedGoogle Scholar
- Dehghan-Baniani D, Mehrjou B, Chu PK, Wu H (2021) A biomimetic Nano-engineered platform for functional tissue engineering of cartilage superficial zone. Adv Healthc Mater 10(4):2001018 ArticleCASGoogle Scholar
- Dehghan-Baniani D, Mehrjou B, Wang D, Bagheri R, Solouk A, Chu PK et al (2022) A dual functional chondro-inductive chitosan thermogel with high shear modulus and sustained drug release for cartilage tissue engineering. Int J Biol Macromol 205:638–650 ArticleCASPubMedGoogle Scholar
- Di Bella C, Duchi S, O’Connell CD, Blanchard R, Augustine C, Yue Z et al (2018) In situ handheld three-dimensional bioprinting for cartilage regeneration. J Tissue Eng Regen Med 12(3):611–621 ArticlePubMedGoogle Scholar
- Dimatteo R, Darling NJ, Segura T (2018) In situ forming injectable hydrogels for drug delivery and wound repair. Adv Drug Deliv Rev 127:167–184 ArticleCASPubMedPubMed CentralGoogle Scholar
- Ding J, Bao S, Qian W, Zhao H (2021) Subcutaneous regeneration of engineered cartilage: a comparison of cell sheets and chondrocyte-scaffold constructs in a porcine model. Plast Reconstr Surg 147(3):625–632 ArticleCASPubMedGoogle Scholar
- Donate R, Monzón M, Alemán-Domínguez ME (2020) Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties. E-Polymers 20(1):571–599 ArticleCASGoogle Scholar
- Elloumi-Hannachi I, Yamato M, Okano T (2010) Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. J Intern Med 267(1):54–70 ArticleCASPubMedGoogle Scholar
- Farr J, Cole B, Dhawan A, Kercher J, Sherman S (2011) Clinical cartilage restoration: evolution and overview. Clin Orthop Relat Res 469(10):2696–2705 ArticlePubMedPubMed CentralGoogle Scholar
- Fu T-S, Wei Y-H, Cheng P-Y, Chu I, Chen W-C (2018) A novel biodegradable and thermosensitive poly (ester-amide) hydrogel for cartilage tissue engineering. Biomed Res Int 2018:2710892 ArticlePubMedPubMed CentralGoogle Scholar
- García Fernández L, Olmeda Lozano M, Benito Garzón L, Pérez Caballer A, San Román J, Vázquez Lasa B (2020) Injectable hydrogel-based drug delivery system for cartilage regeneration. Mater Sci Eng C Mater Biol Appl 110:110702 ArticlePubMedGoogle Scholar
- Garreta E, Kamm RD, de Sousa C, Lopes SM, Lancaster MA, Weiss R, Trepat X et al (2021) Rethinking organoid technology through bioengineering. Nat Mater 20(2):145–155 ArticleCASPubMedGoogle Scholar
- Georgantzinos SK, Giannopoulos GI, Bakalis PA (2021) Additive manufacturing for effective smart structures: the idea of 6D printing. J Compos Sci 5(5):119 ArticleGoogle Scholar
- Ghazal AF, Zhang M, Mujumdar AS, Ghamry M (2022) Progress in 4D/5D/6D printing of foods: applications and R&D opportunities. Crit Rev Food Sci Nutr 1-24:1 ArticleGoogle Scholar
- Giannitelli SM, Accoto D, Trombetta M, Rainer A (2014) Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater 10(2):580–594 ArticleCASPubMedGoogle Scholar
- Gillaspie EA, Matsumoto JS, Morris NE, Downey RJ, Shen KR, Allen MS et al (2016) From 3-dimensional printing to 5-dimensional printing: enhancing thoracic surgical planning and resection of complex tumors. Ann Thorac Surg 101(5):1958–1962 ArticlePubMedPubMed CentralGoogle Scholar
- Gomoll AH, Minas T (2014) The quality of healing: articular cartilage. Wound Repair Regen 22:30–38 ArticlePubMedGoogle Scholar
- Gomoll AH, Madry H, Knutsen G, van Dijk N, Seil R, Brittberg M et al (2010) The subchondral bone in articular cartilage repair: current problems in the surgical management. Knee Surg Sports Traumatol Arthrosc 18(4):434–447 ArticlePubMedPubMed CentralGoogle Scholar
- Gopinathan J, Noh I (2018) Recent trends in bioinks for 3D printing. Biomater Res 22(1):1–15 ArticleGoogle Scholar
- Grogan SP, Dorthé EW, Glembotski NE, Gaul F, D’Lima DD (2020) Cartilage tissue engineering combining microspheroid building blocks and microneedle arrays. Connect Tissue Res 61(2):229–243 ArticleCASPubMedGoogle Scholar
- Groll J, Burdick JA, Cho D-W, Derby B, Gelinsky M, Heilshorn SC et al (2018) A definition of bioinks and their distinction from biomaterial inks. Biofabrication 11(1):013001 ArticleCASPubMedGoogle Scholar
- Hadisi Z, Walsh T, Dabiri SMH, Seyfoori A, Godeau B, Charest G, et al (2020) Three-dimensional printing for the future of medicine. J 3D Print Med 4(1) Google Scholar
- Haleem A, Javaid M, Vaishya R (2019) 5D printing and its expected applications in Orthopaedics. J Clini Orthop Trauma 10(4):809–810 ArticleGoogle Scholar
- He Z, Wang B, Hu C, Zhao J (2017a) An overview of hydrogel-based intra-articular drug delivery for the treatment of osteoarthritis. Colloids Surf B: Biointerfaces 154:33–39 ArticleCASPubMedGoogle Scholar
- He X, Zhang C, Wang M, Zhang Y, Liu L, Yang W et al (2017b) An electrically and mechanically autonomic self-healing hybrid hydrogel with tough and thermoplastic properties. ACS Appl Mater Interfaces 9(12):11134–11143 ArticleCASPubMedGoogle Scholar
- He Y, Derakhshanfar S, Zhong W, Li B, Lu F, Xing M et al (2020) Characterization and application of carboxymethyl chitosan-based bioink in cartilage tissue engineering. J Nanomater 2020:1 Google Scholar
- Hendriks J, Willem Visser C, Henke S, Leijten J, Saris DB, Sun C et al (2015) Optimizing cell viability in droplet-based cell deposition. Sci Rep 5(1):1–10 ArticleGoogle Scholar
- Hinderer S, Layland SL, Schenke-Layland K (2016) ECM and ECM-like materials—biomaterials for applications in regenerative medicine and cancer therapy. Adv Drug Deliv Rev 97:260–269 ArticleCASPubMedGoogle Scholar
- Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23 ArticleGoogle Scholar
- Huey DJ, Hu JC, Athanasiou KA (2012) Unlike bone, cartilage regeneration remains elusive. Science 338(6109):917–921 ArticleCASPubMedPubMed CentralGoogle Scholar
- Ito S, Sato M, Yamato M, Mitani G, Kutsuna T, Nagai T et al (2012) Repair of articular cartilage defect with layered chondrocyte sheets and cultured synovial cells. Biomaterials 33(21):5278–5286 ArticleCASPubMedGoogle Scholar
- Izadifar Z, Chang T, Kulyk W, Chen X, Eames BF (2016) Analyzing biological performance of 3D-printed, cell-impregnated hybrid constructs for cartilage tissue engineering. Tissue Eng Part C Methods 22(3):173–188 ArticleCASPubMedGoogle Scholar
- Jeong H-J, Nam H, Jang J, Lee S-J (2020) 3D bioprinting strategies for the regeneration of functional tubular tissues and organs. Bioengineering 7(2):32 ArticleCASPubMedPubMed CentralGoogle Scholar
- Jordahl JH, Solorio L, Sun H, Ramcharan S, Teeple CB, Haley HR et al (2018) 3D jet writing: functional microtissues based on tessellated scaffold architectures. Adv Mater 30(14):1707196 ArticleGoogle Scholar
- Kačarević ŽP, Rider PM, Alkildani S, Retnasingh S, Smeets R, Jung O et al (2018) An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials 11(11):2199 ArticlePubMedPubMed CentralGoogle Scholar
- Kang Y, Ren L, Yang Y (2014) Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold. ACS Appl Mater Interfaces 6(12):9622–9633 ArticleCASPubMedPubMed CentralGoogle Scholar
- Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A (2016) A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol 34(3):312–319 ArticleCASPubMedGoogle Scholar
- Kashani SY, Moraveji MK, Taghipoor M, Kowsari-Esfahan R, Hosseini AA, Montazeri L et al (2021) An integrated microfluidic device for stem cell differentiation based on cell-imprinted substrate designed for cartilage regeneration in a rabbit model. Mater Sci Eng C 121:111794 ArticleGoogle Scholar
- Khoda A, Ozbolat IT, Koc B (2011) Engineered tissue scaffolds with variational porous architecture. J Biomech Eng 133(1):011001 ArticleCASPubMedGoogle Scholar
- Khoshnood N, Zamanian A (2020) A comprehensive review on scaffold-free bioinks for bioprinting. Bioprinting 19:e00088 ArticleGoogle Scholar
- Kim S, Cho AN, Min S, Kim S, Cho SW (2019) Organoids for advanced therapeutics and disease models. Adv Ther 2(1):1800087 ArticleGoogle Scholar
- Kim W, Gwon Y, Park S, Kim H, Kim J (2023) Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioactive Mater 19:50–74 ArticleCASGoogle Scholar
- Klouda L, Mikos AG (2008) Thermoresponsive hydrogels in biomedical applications. Eur J Pharm Biopharm 68(1):34–45 ArticleCASPubMedGoogle Scholar
- Knowlton S, Yu CH, Ersoy F, Emadi S, Khademhosseini A, Tasoglu S (2016) 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs. Biofabrication 8(2):025019 ArticlePubMedGoogle Scholar
- Kratochvil MJ, Seymour AJ, Li TL, Paşca SP, Kuo CJ, Heilshorn SC (2019) Engineered materials for organoid systems. Nat Rev Mater 4(9):606–622 ArticleCASPubMedPubMed CentralGoogle Scholar
- Krishnan Y, Grodzinsky AJ (2018) Cartilage diseases. Matrix Biol 71:51–69 ArticlePubMedGoogle Scholar
- Kwon H, Brown WE, Lee CA, Wang D, Paschos N, Hu JC et al (2019) Surgical and tissue engineering strategies for articular cartilage and meniscus repair. Nat Rev Rheumatol 15(9):550–570 ArticlePubMedPubMed CentralGoogle Scholar
- Lee SJ, Yoo JJ, Atala A (2018) Biomaterials and tissue engineering. Clin Regen Med Urol:17–51 Google Scholar
- Levingstone TJ, Matsiko A, Dickson GR, O’Brien FJ, Gleeson JP (2014) A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomater 10(5):1996–2004 ArticleCASPubMedGoogle Scholar
- Li C, Cheung TF, Fan VC, Sin KM, Wong CWY, Leung GKK (2017) Applications of three-dimensional printing in surgery. Surg Innov 24(1):82–88 ArticlePubMedGoogle Scholar
- Li Y, Cao J, Han S, Liang Y, Zhang T, Zhao H et al (2018) ECM based injectable thermo-sensitive hydrogel on the recovery of injured cartilage induced by osteoarthritis. Artif Cells Nanomed Biotechnol 46(sup2):152–160 ArticlePubMedGoogle Scholar
- Li J, Chen G, Xu X, Abdou P, Jiang Q, Shi D et al (2019a) Advances of injectable hydrogel-based scaffolds for cartilage regeneration. Regen Biomater 6(3):129–140 ArticleCASPubMedPubMed CentralGoogle Scholar
- Li C, Wang K, Zhou X, Li T, Xu Y, Qiang L et al (2019b) Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering. Biomed Mater 14(2):025006 ArticleCASPubMedGoogle Scholar
- Li X, Xu Q, Alshehri F, Zeng M, Zhou D, Li J et al (2020) Cartilage-derived progenitor cell-laden injectable hydrogel—an approach for cartilage tissue regeneration. ACS Appl Biomater 3(8):4756–4765 ArticleGoogle Scholar
- Li X, Xu Q, Johnson M, Wang X, Lyu J, Li Y et al (2021) A chondroitin sulfate based injectable hydrogel for delivery of stem cells in cartilage regeneration. Biomater Sci 9(11):4139–4148 ArticleCASPubMedGoogle Scholar
- Liao HT, Tsai M-J, Brahmayya M, Chen J-P (2018) Bone regeneration using adipose-derived stem cells in injectable thermo-gelling hydrogel scaffold containing platelet-rich plasma and biphasic calcium phosphate. Int J Mol Sci 19(9):2537 ArticlePubMedPubMed CentralGoogle Scholar
- Lipson H, Kurman M (2013) Fabricated: the new world of 3D printing. Wiley Google Scholar
- Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X et al (2017) Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 5(1):1–20 ArticleGoogle Scholar
- Lu Y, Zhang W, Wang J, Yang G, Yin S, Tang T et al (2019) Recent advances in cell sheet technology for bone and cartilage regeneration: from preparation to application. Int J Oral Sci 11(2):1–13 ArticleCASGoogle Scholar
- Lui YS, Sow WT, Tan LP, Wu Y, Lai Y, Li H (2019) 4D printing and stimuli-responsive materials in biomedical aspects. Acta Biomater 92:19–36 ArticleCASPubMedGoogle Scholar
- Luo Z, Pan J, Sun Y, Zhang S, Yang Y, Liu H et al (2018) Injectable 3D porous micro-scaffolds with a bio-engine for cell transplantation and tissue regeneration. Adv Funct Mater 28(41):1804335 ArticleGoogle Scholar
- Ma K, Zhao T, Yang L, Wang P, Jin J, Teng H et al (2020) Application of robotic-assisted in situ 3D printing in cartilage regeneration with HAMA hydrogel: an in vivo study. J Adv Res 23:123–132 ArticleCASPubMedPubMed CentralGoogle Scholar
- Ma C, Peng Y, Li H, Chen W (2021) Organ-on-a-chip: a new paradigm for drug development. Trends Pharmacol Sci 42(2):119–133 ArticlePubMedGoogle Scholar
- Mahmoudi M, Bonakdar S, Shokrgozar MA, Aghaverdi H, Hartmann R, Pick A et al (2013) Cell-imprinted substrates direct the fate of stem cells. ACS Nano 7(10):8379–8384 ArticleCASPubMedGoogle Scholar
- Malda J, Visser J, Melchels FP, Jüngst T, Hennink WE, Dhert WJ et al (2013) 25th anniversary article: engineering hydrogels for biofabrication. Adv Mater 25(36):5011–5028 ArticleCASPubMedGoogle Scholar
- Man Z, Hu X, Liu Z, Huang H, Meng Q, Zhang X et al (2016) Transplantation of allogenic chondrocytes with chitosan hydrogel-demineralized bone matrix hybrid scaffold to repair rabbit cartilage injury. Biomaterials 108:157–167 ArticleCASPubMedGoogle Scholar
- Mandrycky C, Wang Z, Kim K, Kim D-H (2016) 3D bioprinting for engineering complex tissues. Biotechnol Adv 34(4):422–434 ArticleCASPubMedGoogle Scholar
- Mashinchian O, Bonakdar S, Taghinejad H, Satarifard V, Heidari M, Majidi M et al (2014) Cell-imprinted substrates act as an artificial niche for skin regeneration. ACS Appl Mater Interfaces 6(15):13280–13292 ArticleCASPubMedGoogle Scholar
- Matsuda N, Shimizu T, Yamato M, Okano T (2007) Tissue engineering based on cell sheet technology. Adv Mater 19(20):3089–3099 ArticleCASGoogle Scholar
- Miao S, Zhu W, Castro NJ, Nowicki M, Zhou X, Cui H et al (2016) 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Sci Rep 6(1):1–10 ArticleCASGoogle Scholar
- Mironov V, Kasyanov V, Markwald RR (2011) Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol 22(5):667–673 ArticleCASPubMedGoogle Scholar
- Mobasheri A, Kalamegam G, Musumeci G, Batt ME (2014) Chondrocyte and mesenchymal stem cell-based therapies for cartilage repair in osteoarthritis and related orthopaedic conditions. Maturitas 78(3):188–198 ArticleCASPubMedGoogle Scholar
- Moldovan NI, Hibino N, Nakayama K (2017) Principles of the Kenzan method for robotic cell spheroid-based three-dimensional bioprinting. Tissue Eng Part B Rev 23(3):237–244 ArticleCASPubMedGoogle Scholar
- Moosazadeh Moghaddam M, Bonakdar S, Shokrgozar MA, Zaminy A, Vali H, Faghihi S (2019) Engineered substrates with imprinted cell-like topographies induce direct differentiation of adipose-derived mesenchymal stem cells into Schwann cells. Artif Cells Nanomed Biotechnol 47(1):1022–1035 ArticleCASPubMedGoogle Scholar
- Moroni L, Boland T, Burdick JA, De Maria C, Derby B, Forgacs G et al (2018) Biofabrication: a guide to technology and terminology. Trends Biotechnol 36(4):384–402 ArticleCASPubMedGoogle Scholar
- Mousavi Shaegh SA, De Ferrari F, Zhang YS, Nabavinia M, Binth Mohammad N, Ryan J et al (2016) A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. Biomicrofluidics 10(4):044111 ArticlePubMedPubMed CentralGoogle Scholar
- Murata D, Arai K, Nakayama K (2020) Scaffold-free bio-3D printing using spheroids as “bio-inks” for tissue (re-) construction and drug response tests. Adv Healthc Mater 9(15):1901831 ArticleCASGoogle Scholar
- Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785 ArticleCASPubMedGoogle Scholar
- Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H et al (2017) Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv 35(5):530–544 ArticleCASPubMedGoogle Scholar
- Nakamura A, Murata D, Fujimoto R, Tamaki S, Nagata S, Ikeya M et al (2021) Bio-3D printing iPSC-derived human chondrocytes for articular cartilage regeneration. Biofabrication 13(4):044103 ArticleCASGoogle Scholar
- O’Connor SK, Katz DB, Oswald SJ, Groneck L, Guilak F (2021) Formation of osteochondral organoids from murine induced pluripotent stem cells. Tissue Eng Part A 27(15–16):1099–1109 ArticlePubMedPubMed CentralGoogle Scholar
- Oussedik S, Tsitskaris K, Parker D (2015) Treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: a systematic review. J Arthrosc Relat Surg 31(4):732–744 ArticleGoogle Scholar
- Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343 ArticleCASPubMedGoogle Scholar
- Pati F, Jang J, Ha D-H, Kim SW, Rhie J-W, Shim J-H et al (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5(1):1–11 ArticleGoogle Scholar
- Prendergast ME, Burdick JA (2020) Recent advances in enabling technologies in 3D printing for precision medicine. Adv Mater 32(13):1902516 ArticleCASGoogle Scholar
- Rawal P, Tripathi DM, Ramakrishna S, Kaur S (2021) Prospects for 3D bioprinting of organoids. Bio-Design Manufact 4(3):627–640 ArticleGoogle Scholar
- Reddy PR, Devi PA (2018) Review on the advancements of additive manufacturing-4D and 5D printing. Int J Mech Prod Eng Res Dev 8(4):397–402 Google Scholar
- Rizzo F, Kehr NS (2021) Recent advances in injectable hydrogels for controlled and local drug delivery. Adv Healthc Mater 10(1):2001341 ArticleCASGoogle Scholar
- Roseti L, Cavallo C, Desando G, Parisi V, Petretta M, Bartolotti I et al (2018) Three-dimensional bioprinting of cartilage by the use of stem cells: a strategy to improve regeneration. Materials. 11(9):1749 ArticlePubMedPubMed CentralGoogle Scholar
- Santo VE, Estrada MF, Rebelo SP, Abreu S, Silva I, Pinto C et al (2016) Adaptable stirred-tank culture strategies for large scale production of multicellular spheroid-based tumor cell models. J Biotechnol 221:118–129 ArticleCASPubMedGoogle Scholar
- Saska S, Pilatti L, Blay A, Shibli JA (2021) Bioresorbable polymers: advanced materials and 4D printing for tissue engineering. Polymers 13(4):563 ArticleCASPubMedPubMed CentralGoogle Scholar
- Satpathy A, Datta P, Wu Y, Ayan B, Bayram E, Ozbolat IT (2018) Developments with 3D bioprinting for novel drug discovery. Expert Opin Drug Discovery 13(12):1115–1129 ArticleCASGoogle Scholar
- Scoutaris N, Ross S, Douroumis D (2016) Current trends on medical and pharmaceutical applications of inkjet printing technology. Pharm Res 33(8):1799–1816 ArticleCASPubMedGoogle Scholar
- Shen S, Chen M, Guo W, Li H, Li X, Huang S et al (2019) Three dimensional printing-based strategies for functional cartilage regeneration. Tissue Eng Part B Rev 25(3):187–201 ArticlePubMedGoogle Scholar
- Shi D, Xu X, Ye Y, Song K, Cheng Y, Di J et al (2016) Photo-cross-linked scaffold with kartogenin-encapsulated nanoparticles for cartilage regeneration. ACS Nano 10(1):1292–1299 ArticleCASPubMedGoogle Scholar
- Shipley R, Jones G, Dyson R, Sengers B, Bailey C, Catt C et al (2009) Design criteria for a printed tissue engineering construct: a mathematical homogenization approach. J Theor Biol 259(3):489–502 ArticleCASPubMedGoogle Scholar
- Si Y, Yu J, Tang X, Ge J, Ding B (2014) Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality. Nat Commun 5(1):1–9 ArticleGoogle Scholar
- Singh S, Choudhury D, Yu F, Mironov V, Naing MW (2020) In situ bioprinting–bioprinting from benchside to bedside? Acta Biomater 101:14–25 ArticleCASPubMedGoogle Scholar
- Soliman S, Pagliari S, Rinaldi A, Forte G, Fiaccavento R, Pagliari F et al (2010) Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Acta Biomater 6(4):1227–1237 ArticleCASPubMedGoogle Scholar
- Son J, Bang MS, Park J-K (2018) Hand-maneuverable collagen sheet with micropatterns for 3D modular tissue engineering. ACS Biomater Sci Eng 5(1):339–345 ArticlePubMedGoogle Scholar
- Steadman JR, Rodkey WG, Briggs KK (2010) Microfracture: its history and experience of the developing surgeon. Cartilage 1(2):78–86 ArticlePubMedPubMed CentralGoogle Scholar
- Su J-W, Tao X, Deng H, Zhang C, Jiang S, Lin Y et al (2018) 4D printing of a self-morphing polymer driven by a swellable guest medium. Soft Matter 14(5):765–772 ArticleCASPubMedGoogle Scholar
- Sun J, Vijayavenkataraman S, Liu H (2017) An overview of scaffold design and fabrication technology for engineered knee meniscus. Materials. 10(1):29 ArticlePubMedPubMed CentralGoogle Scholar
- Sun Y, Nan D, Jin H, Qu X (2020) Recent advances of injectable hydrogels for drug delivery and tissue engineering applications. Polym Test 81:106283 ArticleCASGoogle Scholar
- Theus AS, Ning L, Hwang B, Gil C, Chen S, Wombwell A et al (2020) Bioprintability: physiomechanical and biological requirements of materials for 3d bioprinting processes. Polymers 12(10):2262 ArticleCASPubMedPubMed CentralGoogle Scholar
- Tibbits S (2014) 4D printing: multi-material shape change. Archit Des 84(1):116–121 Google Scholar
- Tu Y, Chen N, Li C, Liu H, Zhu R, Chen S et al (2019) Advances in injectable self-healing biomedical hydrogels. Acta Biomater 90:1–20 ArticleCASPubMedGoogle Scholar
- Valot L, Martinez J, Mehdi A, Subra G (2019) Chemical insights into bioinks for 3D printing. Chem Soc Rev 48(15):4049–4086 ArticleCASPubMedGoogle Scholar
- Vashist A, Kaushik A, Alexis K, Dev Jayant R, Sagar V, Vashist A et al (2017) Bioresponsive injectable hydrogels for on-demand drug release and tissue engineering. Curr Pharm Des 23(24):3595–3602 ArticleCASPubMedPubMed CentralGoogle Scholar
- Visser J, Melchels FP, Jeon JE, Van Bussel EM, Kimpton LS, Byrne HM et al (2015) Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun 6(1):1–10 ArticleGoogle Scholar
- Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16(6):229–241 ArticleCASGoogle Scholar
- Wang F, Hu Y, He D, Zhou G, Yang X, Ellis E III (2017) Regeneration of subcutaneous tissue-engineered mandibular condyle in nude mice. J Cranio-Maxillofac Surg 45(6):855–861 ArticleGoogle Scholar
- Wang Y, Cui H, Esworthy T, Mei D, Wang Y, Zhang LG (2021) Emerging 4D printing strategies for next-generation tissue regeneration and medical devices. Adv Mater 2021:2109198 Google Scholar
- Wei G, Ma PX (2008) Nanostructured biomaterials for regeneration. Adv Funct Mater 18(22):3568–3582 ArticleCASGoogle Scholar
- Wei W, Ma Y, Yao X, Zhou W, Wang X, Li C et al (2021) Advanced hydrogels for the repair of cartilage defects and regeneration. Bioact Mater 6(4):998–1011 ArticleCASPubMedGoogle Scholar
- Westin CB, Nagahara MH, Decarli MC, Kelly DJ, Moraes ÂM (2020) Development and characterization of carbohydrate-based thermosensitive hydrogels for cartilage tissue engineering. Eur Polym J 129:109637 ArticleCASGoogle Scholar
- Xavier JR, Thakur T, Desai P, Jaiswal MK, Sears N, Cosgriff-Hernandez E et al (2015) Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach. ACS Nano 9(3):3109–3118 ArticleCASPubMedGoogle Scholar
- Xiongfa J, Hao Z, Liming Z, Jun X (2018) Recent advances in 3D bioprinting for the regeneration of functional cartilage. Regen Med 13(1):73–87 ArticlePubMedGoogle Scholar
- Xu T, Binder KW, Albanna MZ, Dice D, Zhao W, Yoo JJ et al (2012) Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication 5(1):015001 ArticlePubMedGoogle Scholar
- Xu Y, Peng J, Richards G, Lu S, Eglin D (2019) Optimization of electrospray fabrication of stem cell–embedded alginate–gelatin microspheres and their assembly in 3D-printed poly (ε-caprolactone) scaffold for cartilage tissue engineering. J Orthop Transl 18:128–141 Google Scholar
- Xu Y, Xu Y, Bi B, Hou M, Yao L, Du Q et al (2020) A moldable thermosensitive hydroxypropyl chitin hydrogel for 3D cartilage regeneration in vitro and in vivo. Acta Biomater 108:87–96 ArticleCASPubMedGoogle Scholar
- Yang GH, Yeo M, Koo YW, Kim GH (2019) 4D bioprinting: technological advances in biofabrication. Macromol Biosci 19(5):1800441 ArticleGoogle Scholar
- Yano F, Hojo H, Ohba S, Saito T, Honnami M, Mochizuki M et al (2013) Cell-sheet technology combined with a thienoindazole derivative small compound TD-198946 for cartilage regeneration. Biomaterials 34(22):5581–5587 ArticleCASPubMedGoogle Scholar
- Yao Q, Wei B, Liu N, Li C, Guo Y, Shamie AN et al (2015) Chondrogenic regeneration using bone marrow clots and a porous polycaprolactone-hydroxyapatite scaffold by three-dimensional printing. Tissue Eng Part A 21(7–8):1388–1397 ArticleCASPubMedPubMed CentralGoogle Scholar
- Yu F, Choudhury D (2019) Microfluidic bioprinting for organ-on-a-chip models. Drug Discov Today 24(6):1248–1257 ArticleCASPubMedGoogle Scholar
- Zeijderveld J (2018) 5D printing: a new branch of additive manufacturing. Sculpteo Rep Google Scholar
- Zhang YS, Arneri A, Bersini S, Shin S-R, Zhu K, Goli-Malekabadi Z et al (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59 ArticleCASPubMedPubMed CentralGoogle Scholar
- Zhang J, Wei X, Zeng R, Xu F, Li X (2017a) Stem cell culture and differentiation in microfluidic devices toward organ-on-a-chip. Future Sci OA 3(2):FSO187 ArticleCASPubMedPubMed CentralGoogle Scholar
- Zhang YS, Aleman J, Shin SR, Kilic T, Kim D, Shaegh SAM et al (2017b) Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci 114(12):E2293–EE302 ArticleCASPubMedPubMed CentralGoogle Scholar
- Zhang W, Yang G, Wang X, Jiang L, Jiang F, Li G et al (2017c) Magnetically controlled growth-factor-immobilized multilayer cell sheets for complex tissue regeneration. Adv Mater 29(43):1703795 ArticleGoogle Scholar
- Zhang S, Huang D, Lin H, Xiao Y, Zhang X (2020) Cellulose nanocrystal reinforced collagen-based nanocomposite hydrogel with self-healing and stress-relaxation properties for cell delivery. Biomacromolecules 21(6):2400–2408 ArticleCASPubMedGoogle Scholar
- Zhang X, Liu Y, Luo C, Zhai C, Li Z, Zhang Y et al (2021) Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. Mater Sci Eng C 118:111388 ArticleCASGoogle Scholar
- Zhao P, Gu H, Mi H, Rao C, Fu J, Turng L-s (2018) Fabrication of scaffolds in tissue engineering: a review. Frontiers of. Mech Eng 13(1):107–119 Google Scholar
- Zhao Z, Fan C, Chen F, Sun Y, Xia Y, Ji A et al (2020) Progress in articular cartilage tissue engineering: a review on therapeutic cells and macromolecular scaffolds. Macromol Biosci 20(2):1900278 ArticleCASGoogle Scholar
- Zhu J (2020) Application of organ-on-chip in drug discovery. J Biosc Med 8(3):119–134 CASGoogle Scholar
- Zhu W, Cao L, Song C, Pang Z, Jiang H, Guo C (2021) Cell-derived decellularized extracellular matrix scaffolds for articular cartilage repair. Int J Artif Organs 44(4):269–281 ArticleCASPubMedGoogle Scholar
Author information
Authors and Affiliations
- Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran Mahsa Fallah Tafti & Shahab Faghihi
- Mahsa Fallah Tafti